
763695S GENERAL RELATIVITY Exercise 1 Autumn 2016

1. Newton’s law of gravity as a field equation
According to Newton’s law of gravity, the force on a body 1 (mass m1) at r1 caused
by a second body (mass m2) at r2 is

F = −Gm1m2

r2
r̂, (1)

where r = r1 − r2 and G is the constant of gravity. In this exercise we try to show
that this implies that the acceleration a of a test particle at r in the presence of an
arbitrary mass distribution with density ρ(r) is given by

a(r) = −∇V (r), (2)

where the potential V satisfies the Poisson equation

∇2V (r) = 4πGρ(r). (3)

a) Based on (1) and (2) show that the potential caused by one point particle of
mass M at the origin corresponds to the potential

V (r) = −GM
r
. (4)

b) Show that the potential (4) satisfies the Poisson equation for r 6= 0.
c) By integrating the Poisson equation over a small sphere of radius ε around the
origin, and transforming the left hand side to a surface integral, show that the
potential (4) satisfies the Poisson equation also at r = 0.
d) Based on the above, try to justify the claim in the introduction for an arbitrary
mass distribution (not just one point mass).
You can use the following formulas appropriate for spherical coordinates (r, θ, φ):

∇Φ = r̂
∂Φ

∂r
+ θ̂

1

r

∂Φ

∂θ
+ φ̂

1

r sin θ

∂Φ

∂φ
(5)

∇2Φ =
1

r2
∂

∂r

(
r2
∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂2Φ

∂φ2
. (6)

The motivation for this exercise is that equation (3) has some similarity with the
corresponding equation in general relativity, that will be discussed later in this
course.

2. Four vector manipulation in special relativity
Consider the four-vectors

λµ = (2, 1, 1, 0) and σα = (1, 3, 0, 0). (7)



a) Calculate λµ, σν , λµλµ, σασα, σνλν .
b) Draw a sketch of the four vector λµ (7) in coordinate axes (λ1, λ2, λ0), where
the λ0 axis is drawn vertical. Can λµ represent a difference of events for the same
particle? Do the same for σµ. Sketch also the surface λµλµ = 0 (known as the light
cone).
c) Consider the Lorentz-transformation λµ′ = Λµ′

ν λ
ν , where

[Λµ′

ν ] =


γ −v

c
γ 0 0

−v
c
γ γ 0 0

0 0 1 0
0 0 0 1

 (8)

and γ = 1/
√

1− v2/c2. Show that when this is applied to event four vector xµ =

(ct, x, y, z), it is equivalent to the familiar form of the Lorentz transformation

x′ =
x− vt√
1− v2/c2

y′ = y

z′ = z

t′ =
t− (v/c2)x√

1− v2/c2
. (9)

d) Using (7) and Lorentz transformation with v = c/2, calculate λµ′ , σµ′ and λµ′σµ′ .
Compare the last one with σνλν .
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1. The coefficients of Lorentz transformation
Based on invariance of s2 = c2t2 − x2 − y2 − z2, show that in the transformation

t′ = Bt+ Cx
x′ = A(x− vt)
y′ = y
z′ = z

 ,

the constants are A = B = (1− v2/c2)−1/2, C = −(v/c2)(1− v2/c2)−1/2.

2. Inverse Lorentz transformation
Equation 

ct′

x′

y′

z′

 =


γ −vγ/c 0 0

−vγ/c γ 0 0
0 0 1 0
0 0 0 1



ct
x
y
z


gives the matrix [Λµ′

ν ] for the boost in the x direction. What form does the inverse
matrix [Λν

µ′ ] take? What is the velocity of K relative to K ′?

3. Newtonian limit of the Lorentz transformation
Show that when v/c is negligible, the equations of Lorentz boost:

t′ = γ(t− xv/c2), x′ = γ(x− vt), y′ = y, z′ = z

reduce to those of a Galilean boost:

t′ = t, x′ = x− vt, y′ = y, z′ = z.

4. 4-velocity
In a laboratory frame, write the 4-velocity uµ for (a) a stationary chair, (b) a
speeding bullet. Is it possible to write uµ for a photon?

5. Wave 4-vector
Consider an electromagnetic plane wave whose electric field is of the form

E = E0 cos(ωt− k · r). (10)

a) What is the frequency ν of the wave? How is k related to the propagation direction
vector n̂ and the wave length λ of the wave? How should ω and k be related in
order that the velocity of the wave be c?



b) We write the electric field of the wave in the form

E = E0 cos(kµxµ). (11)

Write kµxµ in terms of components and comparing with (10) identify the compo-
nents of wave 4-vector kµ. Express kµ using λ and n̂.

6. Electromagnetic field tensor
Show that the definitions

E = −∇ϕ− ∂A

∂t
(12)

B = ∇×A, (13)

Aµ = (
ϕ

c
,A), Aµ = (

ϕ

c
,−A) (14)

and
Fµν =

∂Aµ
∂xν
− ∂Aν
∂xµ

(15)

lead to

[Fµν ] =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0

 , (16)
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1. Basis vectors of cylindrical coordinates
Cylindrical coordinates (ρ, φ, z) are defined by

r = ρ cosφi+ ρ sinφj + zk,

where 0 ≤ ρ ≤ ∞, 0 ≤ φ ≤ 2π and −∞ ≤ z ≤ ∞. Obtain expressions for the
natural basis vectors eρ, eφ, ez and the dual basis vectors eρ, eφ, ez in terms of i,
j, k.

2. Constant vector field in different coordinates
Show that, when referred to
(a) the natural basis {er, eθ, eφ } of spherical coordinates,
(b) the natural basis {eρ, eφ, ez } of cylindrical coordinates,
(c) the natural basis {eu, ev, ew } of the paraboloidal coordinates (u, v, w)

x = u+ v, y = u− v, z = 2uv + w,

the constant vector field i is given by (cosec θ = 1/ sin θ)
(a) i = sin θ cosφer + r−1 cos θ cosφeθ − r−1 cosec θ sinφeφ,
(b) i = cosφeρ − ρ−1 sinφeφ,
(c) i = 1

2
eu + 1

2
ev − (u+ v)ew.

3. Covariant componenets
Verify equation

λj = λ · ej,

which shows that the covariant components λj of a vector λ are given by taking dot
products of λ with the natural basis vectors ej.

4. Transformation between basis vectors
Show that ei = gije

j and ei = gijej.

5. Simplifications
Simplify the following expressions:
(a) λiδjiλj, (b) µigijgjkλk, (c) gijλiµj − λkµk.

6. G and Ĝ in orthogonal coordinates
If the coordinate system is orthogonal, what can you say about the matricesG ≡ [gij]

and Ĝ ≡ [gij]?



7. G and Ĝ in paraboloidal coordinates
Inverting the paraboloidal coordinates of Problem 2c gives

u =
1

2
(x+ y), v =

1

2
(x− y), w = z − 1

2
(x2 − y2).

Form the natural and dual basis vectors and show that they lead to

G = [gij] =

 2(1 + 2v2) 4uv 2v
4uv 2(1 + 2u2) 2u
2v 2u 1

 ,

Ĝ = [gij] =

 1/2 0 −v
0 1/2 −u
−v −u 2u2 + 2v2 + 1

 .
Show that these satisfy GĜ = ĜG = I.

8. Contravariant components in paraboloidal coordinates
In paraboloidal coordinates (Problems 2c and 7) a vector field µ has covariant
components given by

µi = vδ1i − uδ2i + δ3i .

What are its contravariant components µi?

9. Kronecker delta
A repeated suffix implies summation. What, then are the values of
(a) δii, (b) δAA, (c) δaa, (d) δµµ?

Remember that uppercase literal suffixes A, B, . . . are used when referring to a two
dimensional space, and take values 1 and 2; suffixes i, j, k, . . . take values 1, 2, 3;
Greek suffixes take values 0, 1, 2, 3; lower case letters from the beginning of the
alphabet refer to an N -dimensional space, and have the range 1, 2, 3, . . ., N .
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1. Line element
For the paraboloidal coordinates (Example 1.2.1 in FN)

G = [gij] =

 2(1 + 2v2) 4uv 2v
4uv 2(1 + 2u2) 2u
2v 2u 1

 .
What form does the line element ds2 = gijdu

iduj take in these coordinates?

2. Curve length
Describe the curve given in cylindrical coordinates by

ρ = a, φ = t, z = t, −π ≤ t ≤ π

(where a is a positive constant) and find its length.

3. Arc length as parameter
Suppose that in the curve r(s), the arc length s (measured along a curve from some
base point) is used as a parameter. Calculate the length of the tangent vector ṙ(s)
and argue that it is equal to 1.

4. Relationship of U j
i′ and U j′

i

Use the chain rule to show that Uk
i′U

i′
j = δkj and Uk′

i U
i
j′ = δkj . Obtain the same

results by using the fact that δkj = ek · ej = ek
′ · ej′ .

5. Transformation of covariant components
Obtain the equation µi = U j′

i µj′ using equation µi′ = U j
i′µj and the result of exercise

4.

6. Transformation of gij in matrix form
Translate equation

gi′j′ = Uk
i′U

l
j′gkl

into a matrix equation involving

Û ≡ [U i
j′ ], G ≡ [gij], G

′ ≡ [gi′j′ ].

Hence, use G in spherical coordinates (Example 1.3.1 in FN)

G =

 1 0 0
0 r2 0
0 0 r2 sin2 θ





and the transformation matrix between cylindrical and spherical coordinates (Example
1.4.1 in FN)

Û =

 sin θ 0 cos θ
(cos θ)/r 0 −(sin θ)/r

0 1 0

 ,
to obtain the line element for Euclidean space in cylindrical coordinates.

7. Transformation of the stress tensor
Show that the components τ ij of the stress tensor τ are given by

τ ij = ei · τ (ej)

and use this result to re-establish the transformation formula

τ i
′

m′ = U i′

k U
l
m′τ kl .
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1. Basis vectors of the tangent plane
Starting from r = (u + v)i + (u − v)j + 2uvk, calculate the natural basis {eA} =
{eu, ev}, and the quantities gAB and gAB. (Hint: you can use the identity GĜ = I.)

2. Line element of a surface
Write down the line element for
(a) a sphere of radius a, using angles (θ, φ) borrowed from spherical coordinates as
parameters;
(b) a cylinder whose cross section is a circle of radius a, using (θ, z) borrowed from
cylindrical coordinates as parameters;
(c) the hyperbolic paraboloid of exercise 1, using the parameters (u, v) of that
exercise.

3. Flatness of a surface
Is the cylinder of exercise 2(b) curved or flat? By flat, one means that the line
element can be written as ds2 = du2 + dv2 in some coordinates (u, v).

4. Coordinate dependence of τab = δab
Suppose that in some coordinate system the components τab of a type (0, 2) tensor
satisfy τab = δab. Show that this property is not coordinate-independent.
(Use the transformations between spherical and cylindrical coordinates developed
in exercise 4.6 as the basis for a counter example.)

5. Symmetric tensor
Verify that the relationship τab = τ ba, defining a symmetric tensor, is coordinate-
independent.

6. A tensor identity
Show that if σab = σba and τab = −τ ba for all a, b, then σabτab = 0.

7. Decomposition of a tensor into symmetric and antisymmetric parts
Show that any type (2, 0) or type (0, 2) tensor can be expressed as the sum of a
symmetric and an antisymmetric (τab = −τ ba) tensor.

Continues...



8. Coordinate transformation
Show that if at a point P of a manifold the contravariant vector λa is nonzero, then
it is possible to change to a new (primed) coordinate system in which λa′ = δa1 at
the P.
(A simple transformation between coordinates xa′ and xb could be xa′ = Aa

′
b x

b with
a constant matrix A = [Aa

′
b ]. Assuming this form write the conditions that A should

satisfy, and argue that they all can be satisfied.)

9. Another tensor identity
If τab is a symmetric tensor and λa a contravariant vector with the property that

τ bcλa + τ caλb + τabλc = 0

for all a, b, c, deduce that either τab = 0 or λa = 0.
(Hint: If at the point in question λa 6= 0, then we can introduce the special coordinate
system of previous exercise.)
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1. Parameter independence of arc length
Show that the definition of the length of a curve given by equation

L =
∫ tb

ta
|gabẋaẋb|1/2dt

is independent of the parameter used.

2. Vectors in Schwarzschild metric
For r > 2m, the Schwarzschild solution has a metric tensor field given by

[gµν ] = diag(c2(1− 2m/r),−(1− 2m/r)−1,−r2,−r2 sin2 θ),

where the coordinates are labeled according to t ≡ x0, r ≡ x1, θ ≡ x2, φ ≡ x3. Find
the lengths of the following vectors and the angles between them:

(a) λµ ≡ δµ0 ; (b) µµ ≡ δµ1 ; (c) νµ ≡ δµ0 + c(1− 2m/r)δµ1 .

Are any of these vectors null? Are any pairs orthogonal?

3. Coordinate transformation
Let xi be a system of Cartesian coordinates in Euclidean space, and let xi′ be a new
system whose axes are obtained by rotating those of the unprimed system about its
x3 axis through an angle θ in the positive sense.

a) Show that at each point of space the new basis vectors are given in terms of the old
basis vectors by

e1′ = cos θ e1 + sin θ e2, e2′ = − sin θ e1 + cos θ e2, e3′ = e3.

What are the transformation matrices [X i′
j ] and [X i

j′ ]?

b) Recall that, for a rigid body having one of its points fixed at the origin O, its angular
momentum Li about O can be expressed as Li = I ijω

j, where I ij is the inertia tensor
of the body about O and ωi is its angular momentum (all regarded as tensors at
O). Find [Li] when

[I ij] =

 0 0 0
0 m 0
0 0 m

 and [ωi] =

 0
15
0


c) Transform the components to find I i

′
j′ , ωi

′ , and Li
′ relative to the new coordinate

system, and check that Li′ = I i
′
j′ω

j′ .



4. General parameter in geodesic equation
Show that if a general parameter t = t(s) (where dt/ds 6= 0) is used to parameterize
a straight line in Euclidean space, then the geodesic equation takes the form

d2ui

dt2
+ Γijk

duj

dt

duk

dt
= h(s)

dui

dt
where h(s) = − d

2t

ds2

(
dt

ds

)−2
.

Deduce that this reduces to the simple form

d2ui

dt2
+ Γijk

duj

dt

duk

dt
= 0

if, and only if, t = As+B, where A, B are constants (A 6= 0).

5. Lenght of tangent vector
The aim of this exercise is to show that the length L of the tangent vector ẋa to
an affinely parameterized (i.e. the parameter is of the form t = As+B) geodesic is
constant.

a) Start by arguing that ±L2 = gabẋ
aẋb.

b) Differentiate this equation to obtain an expression for ±2LL̇ in terms of quantities
gab, ġab, ẋa, and ẍa.

c) Put ġab = ∂cgabẋ
c and use the geodesic equation d2xa

du2
+ Γabc

dxb

du
dxc

du
= 0 to express the

second derivates ẍa in term of the connection coefficients Γabc and the first derivates
ẋa.

d) Then use equation Γabc = 1
2
gad(∂bgdc + ∂cgbd− ∂dgbc) to express the Γabc in terms of the

metric tensor components and their derivates.

e) Simplify to obtain 2LL̇ = 0, from which it follows that L̇ = 0 and L is constant.
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1. Connection coefficients for a spherical surface
In exercise 5.2(a) it was shown that the line element on a sphere of radius a using
spherical coordinates is ds2 = a2dθ2 +a2 sin2 θ dφ2. Defining the coordinates u1 ≡ θ,
u2 ≡ φ, show that the metric tensor components are given by

[gAB] =

[
a2 0
0 a2 sin2 θ

]
.

Deduce using the Lagrangian method that the only nonzero connection coefficients
are

Γ1
22 = − sin θ cos θ, Γ2

12 = Γ2
21 = cot θ.

2. Geodesics for a spherical surface
Show that all lines of longitude on a sphere (curves given by φ = constant) are
geodesics.

3. Time-like geodesics in Robertson-Walker spacetime
Robertson-Walker spacetime is defined by the line element gµνdxµdxν = dt2 −
[R(t)]2[(1 − kr2)−1dr2 + r2dθ2 + r2 sin2 θdφ2], where µ, ν = 0, 1, 2, 3 and x0 ≡ t,
x1 ≡ r, x2 ≡ θ, x3 ≡ φ. A coordinate curve for which r, θ, φ are constant and t
varies is given by

xµ(u) = uδµ0 + r0δ
µ
1 + θ0δ

µ
2 + φ0δ

µ
3 ,

where r0, θ0, φ0 are constants and u is a parameter. Verify that all such coordinate
curves are geodesics affinely parameterized by u.

4. Parallel transport on a spherical surface
Consider a sphere of radius a, with coordinates u1 ≡ θ, u2 ≡ φ borrowed from
spherical coordinates, where 0 < θ < π and 0 < φ < 2π. Let us transport a vector
λ parallelly around the circle of latitude γ given by θ = θ0 (θ0 = constant), starting
and ending at the point P0 where φ = 0 or 2π. The circle is given parametrically by

uA = θδA1 + tδA2 , 0 < t < 2π,

so u̇ = δA2 and the equation for parallel transport becomes λ̇A + ΓAB2λ
B = 0. Verify

that the initial-value problem comprising the pair of equations{
λ̇1 − sin θ0 cos θ0λ

2 = 0

λ̇2 + cot θ0λ
1 = 0



with initial conditions {
λ1(0) = a−1 cosα
λ2(0) = (a sin θ0)

−1 sinα

has a solution given by equations{
λ1 = a−1 cos(α− ωt)
λ2 = (a sin θ0)

−1 sin(α− ωt),

where ω = cos θ0.

5. Reversal in transport on a closed path
For what circle(s) of latitude is the final direction of the transported vector in
Exercise 7.4 exactly opposite to that of the initial direction?

6. Angle between vectors in parallel transport
Noting that the equator (θ0 = π/2) is a geodesic and has tangent vector µA ≡ a−1δA2 ,
verify that for parallel transport along a geodesic the angle between the transported
vector of Exercise 7.4 and the tangent to the geodesic is constant.
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1. Transformation of Γabc
Show that an alternative form for the transformation formula

Γa
′

b′c′ = ΓdefX
a′

d X
e
b′X

f
c′ +Xd

c′b′X
a′

d

is
Γa

′

b′c′ = ΓdefX
a′

d X
e
b′X

f
c′ −Xe

b′X
f
c′X

a′

ef .

2. Transformation of absolute derivative
By using the transformation rules to the quantities on the left hand side, verify the
formula

λ̇a
′
+ Γa

′

b′c′λ
b′ẋc

′
= Xa′

d

(
λ̇d + Γdefλ

eẋf
)
.

Based on this, deduce that the defining equation for parallel transport of a contra-
variant vector along a curve

λ̇a + Γabcλ
bẋc = 0

is coordinate-independent.

3. Absolute derivative of (0,2) and (1,1) tensors
Obtain formulae

Dτab
du
≡ τ̇ab − Γcadτcbẋ

d − Γcbdτacẋ
d and

Dτab
du
≡ τ̇ab + Γacdτ

c
b ẋ

d − Γcbdτ
a
c ẋ

d,

using similar method as writing τab = λaµb in deriving the result

Dτab

du
≡ τ̇ab + Γacdτ

cbẋd + Γbcdτ
acẋd.

4. Geodesic equation using absolute derivative
Show that equation

d2xa

du2
+ Γabc

dxb

du

dxc

du
= 0

for an affinely parameterized geodesic can be written as
Dẋa

du
= 0.

5. Length of tangent vector using absolute derivative
Prove that the length of the tangent vector ẋa to an affinely parameterized geodesic
is constant.
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1. Geodesic coordinates
Show that, as a result of the coordinate transformation leading to geodesic coordi-
nates [equation xa′ ≡ xa − xaO + 1

2
(Γabc)O(xb − xbO)(xc − xcO)], we can write

(ga′b′)O = (gab)O.

2. Equation of motion for a free particle
Deduce the geodesic equation

d2xµ

dτ 2
+ Γµνσ

dxν

dτ

dxσ

dτ
= 0

from the equations
Dpµ/dτ = fµ, pµ ≡ muµ,

in the case of a free particle, for which fµ = 0.

3. Derivatives of inverse functions
Given the function τ(t), the derivative of the inverse function t(τ) is

dt

dτ
=

(
dτ

dt

)−1
.

Show that the second derivative is

d2t

dτ 2
= −d

2τ

dt2

(
dτ

dt

)−3
.

Use this result to show that

h(t) = − d
2t

dτ 2

(
dt

dτ

)−2
=
d2τ

dt2

(
dτ

dt

)−1
. (17)

4. Newtonian limit
(a) Assume that gµν = ηµν + hµν , where hµν are small.
By writing gµν = ηµν + h̃µν , where h̃µν are small, show that

gµν = ηµν − ηµσηνρhσρ. (18)



(b) Show that for nonrelativistic velocities,(
dτ

dt

)2

= 1 + h00.

Hence deduce that the term on the right hand side in the geodesic equation (Exercise
6.4)

d2xi

dt2
+ Γiνσ

dxν

dt

dxσ

dt
= h(t)

dxi

dt
,

where h(t) is given in Eq. (17), is unimportant in the Newtonian limit, where h00 =
2V/c2.

5. Rotating coordinates
Starting from the line element

c2dτ 2 = c2dT 2 − dX2 − dY 2 − dZ2

and the transformation 
T = t
X = x cosωt− y sinωt
Y = x sinωt+ y cosωt
Z = z

check that the line element in coordinates (t, x, y, z) is given by

c2dτ 2 =
[
c2 − ω2

(
x2 + y2

)]
dt2 + 2ωy dx dt− 2ωx dy dt− dx2 − dy2 − dz2.

6. Constant gravitational field
The potential V = gz of constant gravitational field correspons to the line element

c2dτ 2 = c2
(

1 +
2gz

c2

)
dt2 − dx2 − dy2 − dz2.

Use the Lagrange method to calculate the connection coefficients Γµνσ, using the
variables x0 = t, x1 = x, x2 = y, and x3 = z. Show that in the limit c → ∞, the
geodesics satisfy the Newtonian equations of motion

m
d2r

dt2
= −mge3.
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1. Static spherically symmetric spacetime
The line element of a static spherically symmetric spacetime is

c2dτ 2 = A(r) dt2 −B(r) dr2 − r2dθ2 − r2 sin2 θ dφ2.

Use the Euler-Lagrange equations to obtain the geodesic equations, and hence show
that the only nonvanishing connection coefficients are:

Γ0
01 = Γ0

10 = A′/2A, Γ1
00 = A′/2B, Γ1

11 = B′/2B,
Γ1
22 = −r/B, Γ1

33 = −(r sin2 θ)/B, Γ2
12 = Γ2

21 = 1/r,
Γ2
33 = − sin θ cos θ, Γ3

13 = Γ3
31 = 1/r, Γ3

23 = Γ3
32 = cot θ,

where primes denote derivatives with respect to r, and

x0 ≡ t, x1 ≡ r, x2 ≡ θ, x3 ≡ φ.

2. Energy-momentum-stress tensor for fluid at rest
Show that in Cartesian coordinate system, which brings the velocity of the fluid
at a point P to rest (i.e., in an instantaneous rest system for the fluid at P), the
components of the stress tensor (as defined by T µν ≡ (ρ + p/c2)uµuν − pηµν) are
given by

[T µν ] =


ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 .

3. Dimensional consistency of the energy-momentum-stress tensor
What is the unit of T µν? Check that all the terms on the right-hand side of equation
T µν ≡ (ρ+ p/c2)uµuν − pηµν have the same units.

4. A simple indentity
Verify that uµuµ = c2 implies that uµ;νuµ = 0.

5. Curvature tensor
(a) Show that for a contravariant vector field λa,

λa;bc − λa;cb = −Ra
dbcλ

d.



(b) Show that for a type (2, 0) tensor field τab,

τab;cd − τab;dc = −Ra
ecdτ

eb −Rb
ecdτ

ae.

(Without loss of generality take τab = λaµb.)
(c) Guess the corresponding expression for a type (2, 1) tensor field τabc .

6. Cyclic identity
Prove the cyclic identity Ra

bcd +Ra
cdb +Ra

dbc = 0.

7. Symmetry of Ricci tensor
By contracting the cyclic identity Ra

bcd + Ra
cdb + Ra

dbc = 0, prove that the Ricci
tensor, Rab = Rc

abc, is symmetric.
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1. Alternative form of Einstein’s field equation
By contracting the mixed form Rµ

ν − 1
2
Rδµν = κT µν of equation Rµν − 1

2
Rgµν = κT µν

show that R = −κT, where T ≡ T µµ , and hence verify equation Rµν = κ(T µν −
1
2
Tgµν).

2. Ricci tensor in a static spherically symmetric spacetime
We have

Rµν ≡ ∂νΓ
σ
µσ − ∂σΓσµν + ΓρµσΓσρν − ΓρµνΓ

σ
ρσ

and from Exercise 9.1 we have

Γ0
01 = Γ0

10 = A′/2A, Γ1
00 = A′/2B, Γ1

11 = B′/2B,
Γ1
22 = −r/B, Γ1

33 = −(r sin2 θ)/B, Γ2
12 = Γ2

21 = 1/r,
Γ2
33 = − sin θ cos θ, Γ3

13 = Γ3
31 = 1/r, Γ3

23 = Γ3
32 = cot θ,

show that

R00 = −A
′′

2B
+
A′

4B

(
A′

A
+
B′

B

)
− A′

rB

and R0i = 0 (i = 1, 2, 3).

3. Curvature tensor of a two-dimensional manifold
Show that in a two-dimensional Riemannian manifold all components of RABCD are
either zero or ±R1212. In terms of the usual spherical coordinates u1 ≡ θ and u2 ≡ φ,
the metric tensor field of a sphere of radius a is given by

[gAB] =

[
a2 0
0 a2 sin2 θ

]
.

Show that R1212 = a2 sin2 θ, and hence deduce that

[RAB] =

[
−1 0
0 − sin2 θ

]

and R = −2/a2.

4. Isotropic form of Schwarzschild metric
Show that the Schwarzschild line element

c2dτ 2 =
(

1− 2m

r

)
c2dt2 −

(
1− 2m

r

)−1
dr2 − r2dθ2 − r2 sin2 θdφ2,



where m = GM/c2, may be put into the isotropic form

c2dτ 2 =

(
1− m

2ρ

)2 (
1 +

m

2ρ

)−2
c2dt2

−
(

1 +
m

2ρ

)4 (
dρ2 + ρ2dθ2 + ρ2 sin2 θdφ2

)
,

where the new coordinate ρ is defined by

r ≡ ρ

(
1 +

m

2ρ

)2
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1. Radial distance in Schwarzschild metric
Show that the length of stick laying radially (between r1 and r2 > r1) in Schwarzschild
metric is

L =
∫ r2

r1

(
1− 2m

r

)−1/2
dr = r2 − r1 +m ln

r2
r1

+O(m2/r),

where m = GM/c2.

2. Spectral shift
Find the fractional shift in frequency, as measured on Earth, for light from a star of
mass 1030 kg, assuming that the photons come from just above the star’s atmosphere
where rB = 1000 km.

3. Particle motion in Schwarzschild metric, part I
With the variables x0 = t, x1 = r, x2 = θ, x3 = φ and with w as an affine parameter,
obtain the second and third (µ = 1 and µ = 2) of equations

d

dw

(
∂L

∂ẋµ

)
− ∂L

∂xµ
= 0,

where

L(ẋσ, xσ) ≡ 1

2
gµν ẋ

µẋν =
1

2

[
(1− 2m/r)c2ṫ2 − (1− 2m/r)−1ṙ2 − r2(θ̇2 + sin2 θ φ̇2)

]
.

Hence show that θ = π/2 satisfies the third equation, and with θ = π/2 the second
equation reduces to

(1− 2m/r)−1r̈ +
mc2

r2
ṫ2 − (1− 2m/r)−2

m

r2
ṙ2 − rφ̇2 = 0.

4. Particle motion in Schwarzschild metric, part II
Continuing the preceding exercise, show that the first and fourth equations (µ = 0
and µ = 3) give the conditions(

1− 2m

r

)
ṫ = constant = k, r2φ̇ = constant = h. (19)

In addition we have the condition

c2 =
(

1− 2m

r

)
c2ṫ2 −

(
1− 2m

r

)−1
ṙ2 − r2φ̇2



for a particle using the proper time τ as the parameter w. Based on these, check
the equation (

du

dφ

)2

+ u2 = E +
2GM

h2
u+

2GM

c2
u3,

where E ≡ c2(k2 − 1)/h2 and u ≡ 1/r.

5. Eddington-Finkelstein coordinates
Verify the form

c2dτ 2 = (1− 2m/r)dv2 − 2 dv dr − r2dθ2 − r2 sin2 θ dφ2

of the line element in Eddington-Finkelstein coordinates by replacing the Schwarzschild
coordinate t by v = ct+ r + 2m ln(r/2m− 1).

6. Schwarzschild radius
Find the Schwarzschild radius of a spherical object with the same mass as that of
the Earth. (Take M⊕ = 6× 1024 kg, G = 6.67× 10−11 Nm2kg−2, c = 3× 108 ms−1.)


