DREAM julkistaa yhdeksän väitöskirjatutkijan paikkaa Oulun yliopistolla
DREAM kouluttaa yhteensä 100 tohtoria seitsemässä suomalaisessa yliopistossa sovelletun matematiikan, fysiikan, tekniikan sekä näiden sovellusten parissa monitieteellisissä tutkimusryhmissä läheisessä yhteistyössä yritysten ja yhteiskunnallisten toimijoiden kanssa. Väitöskirjatöiden ohjaajina toimivat FAME-lippulaivaan (Flagship of Advanced Mathematics for Sensing, Imaging and Modeling) liittyvien alojen asiantuntijat.
Ensimmäisen hakuvaiheen projektit Oulun yliopistossa ovat (kuvaukset englanniksi):
1. Matemaattisten tieteiden tutkimusyksikkö: Scalability of learned reconstructions for cone-beam computed tomography and applications in medicine
Ohjaaja: Andreas Hauptmann
Learned reconstructions for 3D cone-beam computed tomography (CBCT) require significant hardware resources for training as well as evaluation. In this project the candidate is expected to develop novel methods that circumvent the high hardware requirements by combining operator splitting approaches for projection geometries with novel deep learning approaches.
2. Matemaattisten tieteiden tutkimusyksikkö: Advanced image reconstruction for low-field magnetic resonance imaging
Ohjaaja: Andreas Hauptmann
In low-field MRI many ideal assumptions of the high-field equivalent are not satisfiedand hence advanced reconstruction methods are necessary to obtain satisfactory reconstructions. In this project, the candidate is expected to perform fundamental research on advanced image reconstruction techniques while taking into account the nonlinear nature of MR signal generation. A combination of classic model-based reconstructions and data-driven approaches will be developed.
3. Lääketieteen tekniikan ja terveystieteiden tutkimusyksikkö: One-stop shop MRI: AI-assisted combined clinical and quantitative MRI for comprehensive tissue characterization
Ohjaaja: Miika Nieminen
The project will focus on developing new MRI methodologies, including pulse sequence and data analysis methods to simultaneously produce clinical and quantitative MRI images for diagnostics and comprehensive characterization of musculoskeletal tissues in particular. The project involves collaboration with other academic partners as well as an MRI manufacturer.
4. Lääketieteen tekniikan ja terveystieteiden tutkimusyksikkö: Future multi-spectral CT: reconstruction, artefact reduction and tissue quantification algorithm development with diagnostic scanners
Ohjaaja: Miika Nieminen
In this project, novel image reconstruction algorithms and photon counting detector technology are developed to optimize dentomaxillofacial and cranial computed tomography and cone-beam CT by developing novel computational methods for reducing beam hardening and metal artifacts in the dentomaxillofacial region, exploit reconstruction algorithms to boost image quality and develop multi-spectral reconstruction techniques to enhance image quality in helical stroke CT.
5. Lääketieteen tekniikan ja terveystieteiden tutkimusyksikkö: Accelerate and enhance image quality in cardiac MRI
Ohjaaja: Timo Liimatainen
The project will include development of pulse sequences, data-analysis, image processing and testing novel methodology using clinical and/or experimental MRI devices. The project will be done in close collaboration with MRI vendor.
6. Lääketieteen tekniikan ja terveystieteiden tutkimusyksikkö: Methods to predict and search radiation dose outliers in medical imaging
Ohjaaja: Matti Hanni
Statistical and inversion-based methods will be utilized to predict, search, and possibly also prevent radiation dose outliers in medical imaging employing ionizing radiation. The emphasis will be on computed tomography, mammography, and radiography, in this order.
7. Lääketieteen tekniikan ja terveystieteiden tutkimusyksikkö: Enabling high-resolution hierarchical imaging of musculoskeletal tissues
Ohjaaja: Mikko Finnilä
X-ray microscopy and micro-computed tomographic imaging are powerful tools to study biological tissues. However, current technology is based on physical magnification schemes settings boundaries between sample size and achievable resolution. In this project we will implement novel reconstruction methods experimental tomographic data to allow imaging of large objects with high resolution.
8. Avaruusfysiikan ja tähtitieteen tutkimusyksikkö: Space weather influence on ionospheric dynamics
Ohjaaja: Heikki Vanhamäki
We will investigate dynamics of the auroral ionosphere, especially the auroral currents systems, and how they are driven by space weather disturbances such as geomagnetic storms. Large ground- and satellite-based datasets will be utilized together with machine learning tools.
9. NMR-spektroskopian tutkimusyksikkö: Novel NMR methods for analyzing chemical structure and composition of rubber compounds
Ohjaaja: Ville-Veikko Telkki
We develop novel NMR methods for analyzing chemical structure and composition of rubber compounds. The NMR methods rely on relaxation contrast, which reflect molecular mobility and chemical environment. The methods are feasible with affordable and portable benchtop spectrometers, also including single-sided instruments, which allow probing surfaces of objects without size or geometry restrictions, even for entire tires. Industrial rubber products are usually more complex than the formulations used in most previous research, and the large amount of various compounding ingredients makes NMR results difficult to analyze. This challenge is addressed in the proposed doctoral project. Vulcanization time and changes in raw materials affect chemical structure and mobility of elastomers in rubber compound. We aim to find novel and more precise means to quantify different network structures and important parameters such as crosslink density from rubber compounds as well as from tires. Furthermore, we study how novel sustainable raw materials affect to vulcanizate structure. An important part of the project is also developing mathematical processing models and inversion algorithms of the relaxation data.
Hae tästä: https://oulunyliopisto.varbi.com/en/what:job/jobID:709262/