Dataohjattu prosessin parantaminen ketterässä ohjelmistokehityksessä
Väitöstilaisuuden tiedot
Väitöstilaisuuden päivämäärä ja aika
Väitöstilaisuuden paikka
TS101, Linnanmaa
Väitöksen aihe
Dataohjattu prosessin parantaminen ketterässä ohjelmistokehityksessä
Väittelijä
Master of Science Prabhat Ram
Tiedekunta ja yksikkö
Oulun yliopiston tutkijakoulu, Tieto- ja sähkötekniikan tiedekunta, Empiirinen ohjelmistotuotanto ohjelmistoissa, järjestelmissä ja palveluissa (M3S)
Oppiaine
Tietojenkäsittelytiede
Vastaväittäjä
Professori Martin Höst, Lundin yliopisto
Kustos
Professori Markku Oivo, Oulun yliopisto
Dataohjattu prosessin parantaminen ketterässä ohjelmistokehityksessä – Teollinen monitapaustutkimus
Ohjelmistotuotannon harjoittajat ovat yrittäneet hyötyä modernien ohjelmistotuotantomenetelmien, kuten ketterän ohjelmistotuotannon (ASD), synnyttämästä ohjelmistotuotantodatasta.
Jäsenneltyä ohjelmistotuotantodataa on käytetty metriikkaohjelmissa, joiden tarkoitus on parantaa tuotantoprosessia, mutta tarvitaan lisäselvitystä siitä, mitä metriikoita ohjelmistotuotannon
harjoittajat suosivat ja miksi, eteenkin laajamittaisessa ohjelmistotuotannossa. Metriikkaohjelmien menestystekijät eivät myöskään ole yhtä hyvin tunnettuja ASD:ssä kuin perinteisissä ohjelmistotuotantomenetelmissä. Lisäksi on vain vähän tietoa siitä, miten jäsentämätöntä dataa, jota
syntyy paljon enemmän kuin jäsenneltyä, voidaan hyödyntää.
Euroopan unionin Horizon 2020 Q-Rapids projektissa toteutettiin monitapaustutkimus, jonka avulla täydennettiin tutkimustietoa edellä mainittujen puutteiden osalta kahdessa vaiheessa.
Ensimmäisessä vaiheessa koottiin tietoa vallalla olevista käytänteistä sekä ohjelmistotuotannon
harjoittajien näkökulmista, jotka vaikuttavat metriikkaohjelmien määrittelyyn, täytäntöönpanoon ja käyttöön. Toisessa vaiheessa nostettiin esiin empiiristä näyttöä jäsennellyn datan käytöstä prosessinparannusmetriikkaohjelmissa. Lopuksi etsittiin empiiristä näyttöä jäsentämättömän
datan hyödyntämisestä.
Datan käytössä tietoisuuden lisäämiseksi ja hallinnan mahdollistamiseksi ohjelmistotuotannon harjoittajat suosivat metriikoita suunnittelu-, implementaatio- ja testausprosessin mittaamiseen. Ohjelmistotuotannon kontekstuaaliset tekijät, kuten ohjelmistoyhtiön koko ja projektin
luonne, vaikuttavat siihen käynnistääkö tietty metriikka prosessinparannuksen vai onko se prosessinparannuksen pääasiallinen viitoittaja. Edellytykset, jotka mahdollistavat tällaiset metriikkaohjelmat liittyvät datan, prosessien ja metriikoiden toteuttamiskelpoisuuteen. Tekstinlouhintamenetelmät, kuten Latent Dirichlet Allocation, voi mahdollistaa jäsentämättömän data syvemmän ymmärtämisen. Nämä tulokset valaisevat kahden erillisen menetelmän käyttökelpoisuutta, joita ohjelmistotuotannon harjoittajat voivat käyttää ohjelmistodatan hyödyntämisessä myös laajamittaisessa ohjelmistotuotannossa.
Jäsenneltyä ohjelmistotuotantodataa on käytetty metriikkaohjelmissa, joiden tarkoitus on parantaa tuotantoprosessia, mutta tarvitaan lisäselvitystä siitä, mitä metriikoita ohjelmistotuotannon
harjoittajat suosivat ja miksi, eteenkin laajamittaisessa ohjelmistotuotannossa. Metriikkaohjelmien menestystekijät eivät myöskään ole yhtä hyvin tunnettuja ASD:ssä kuin perinteisissä ohjelmistotuotantomenetelmissä. Lisäksi on vain vähän tietoa siitä, miten jäsentämätöntä dataa, jota
syntyy paljon enemmän kuin jäsenneltyä, voidaan hyödyntää.
Euroopan unionin Horizon 2020 Q-Rapids projektissa toteutettiin monitapaustutkimus, jonka avulla täydennettiin tutkimustietoa edellä mainittujen puutteiden osalta kahdessa vaiheessa.
Ensimmäisessä vaiheessa koottiin tietoa vallalla olevista käytänteistä sekä ohjelmistotuotannon
harjoittajien näkökulmista, jotka vaikuttavat metriikkaohjelmien määrittelyyn, täytäntöönpanoon ja käyttöön. Toisessa vaiheessa nostettiin esiin empiiristä näyttöä jäsennellyn datan käytöstä prosessinparannusmetriikkaohjelmissa. Lopuksi etsittiin empiiristä näyttöä jäsentämättömän
datan hyödyntämisestä.
Datan käytössä tietoisuuden lisäämiseksi ja hallinnan mahdollistamiseksi ohjelmistotuotannon harjoittajat suosivat metriikoita suunnittelu-, implementaatio- ja testausprosessin mittaamiseen. Ohjelmistotuotannon kontekstuaaliset tekijät, kuten ohjelmistoyhtiön koko ja projektin
luonne, vaikuttavat siihen käynnistääkö tietty metriikka prosessinparannuksen vai onko se prosessinparannuksen pääasiallinen viitoittaja. Edellytykset, jotka mahdollistavat tällaiset metriikkaohjelmat liittyvät datan, prosessien ja metriikoiden toteuttamiskelpoisuuteen. Tekstinlouhintamenetelmät, kuten Latent Dirichlet Allocation, voi mahdollistaa jäsentämättömän data syvemmän ymmärtämisen. Nämä tulokset valaisevat kahden erillisen menetelmän käyttökelpoisuutta, joita ohjelmistotuotannon harjoittajat voivat käyttää ohjelmistodatan hyödyntämisessä myös laajamittaisessa ohjelmistotuotannossa.
Viimeksi päivitetty: 1.3.2023