Optical tweezers
Our research primarily centers on investigating red blood cells' aggregation and disaggregation properties under different conditions. Key areas of focus also include the characterization of point and elliptical optical tweezers, as well as the analysis of elastic light scattering from trapped particles and cells.
We utilize optical tweezers to study the induced adhesion of red blood cells (RBCs) in both plasma and dextran solutions, aiming at revealing and describing the main mechanisms of cellular interactions [1]. The aggregation of RBCs in these environments was also directly observed and analyzed through scanning electron microscopy.
Using optical tweezers, we study the characteristics and bio-rheological properties of RBCs at the single-cell level. Our key findings include insights into the interplay between blood cells and the factors influencing their interaction dynamics in the presence of nanomaterials, as well as investigations into the effects of laser biomodulation on blood cell properties.
1. T. Avsievich, A. Popov, A. Bykov, I. Meglinski, “Mutual interaction of red blood cells assessed by optical tweezers and scanning electron microscopy imaging”, Optics Letters, 43 (16), 3921-3924 (2018). DOI: 10.1364/OL.43.003921.
2. T. Avsievich, A. Popov, A. Bykov, I. Meglinski, “Mutual interaction of red blood cells influenced by nanoparticles”, Scientific Reports, 9 (1), 5147 (2019). DOI: 10.1038/s41598-019-41643-x
3. T. Avsievich, R. Zhu, A.P. Popov, A. Yatskovskiy, A.A. Popov, G. Tikhonowsky, A. Pastukhov, S. Klimentov, A. Bykov, A. Kabashin, I. Meglinski, “Impact of plasmonic nanoparticles on poikilocytosis and microrheological properties of erythrocytes”, Pharmaceutics, 15, 1046 (2023). DOI: 10.3390/pharmaceutics15041046
4. R. Zhu, T. Avsievich, A. Popov, A. Bykov, I. Meglinski, “In vivo nano-biosensing element of red blood cell-mediated delivery”, Biosensors and Bioelectronics 175, 112845 (2021).DOI: 10.1016/j.bios.2020.112845
5. T. Avsievich, R. Zhu, A. Popov, A. Bykov, I. Meglinski, “The advancement of blood cell research by optical tweezers”, Reviews in Physics, 5, 100043 (2020).DOI: 10.1016/j.revip.2020.100043
6. K. Lee, M. Kinnunen, M. Khokhlova, E. Lyubin, A. Priezzhev, I. Meglinski, and A. Fedyanin, “Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions”, Journal of Biomedical Optics, 21(3), 35001 (2016).DOI: 10.1117/1.JBO.21.3.035001
7. M. Kinnunen, A. Bykov, J. Tuorila, T. Haapalainen, A. Karmenyan, V. Tuchin, “Optical clearing at a cellular level”, Jоurnal of Biomedical Optics, 19(7), 071409 (2014). DOI: 10.1117/1.JBO.19.7.071409
8. M. Kinnunen, A. Kauppila, A. Karmenyan, and R. Myllylä, “Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level”, Biomedical Optics Express 2(7), 1803-1814 (2011). DOI: 10.1364/BOE.2.001803
T. Avsievich, R. Zhu, A. Popov, A. Bykov, I. Meglinski, (2021). “Blood–nanomaterials interactions”. In “Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood”, A. Denizli., T. Nguyen, R. Mariappan, M. Feroz Alam, & K. Khaliqur Rahman (Eds.), 1st ed, pp. 1-40, Elsevier Science Publishing Co. Inc. DOI: 10.1016/B978-0-12-823971-1.00002-7.